Pasturas tropicales, actor clave en el ciclo del nitrógeno y emisiones de GEI en sistemas ganaderos tropicales

La ganadería extensiva basada en libre pastoreo en Latinoamérica representa una importante pieza del sector agrícola, la producción de alimentos y la economía de la región, pero así mismo, una de las principales fuentes de emisiones de gases de efecto invernadero (GEI) (Arango et al., 2020). Los forrajes tropicales perennes del género Urochloa (Syn. Brachiaria) suponen un alto porcentaje de la superficie dedicada a pastos en varios países de Latinoamérica además de creciente uso como cultivo de cobertura (Baptistella et al., 2020), lo que hace fundamental un manejo eficiente de los mismos a fin de reducir las emisiones de GEI de este sector.

En algunos genotipos de la especie Urochloa humidicola (Rendle) Schweick (Poaceae) (Syn. Brachiaria humidicola) se ha observado un fenómeno llamado inhibición biológica de la nitrificación (IBN) (Subbarao et al., 2009). Un compuesto exudado por las raíces de estas plantas llamado Brachialactone se ha demostrado capaz de bloquear el proceso de nitrificación (la oxidación del relativamente móvil amonio [NH4+] al móvil nitrato [NO3]) en el suelo. Esta IBN se ha demostrado capaz de reducir las tasas netas de nitrificación en el suelo y las emisiones de N2O, un potente gas de efecto invernadero, derivadas de la aplicación de fertilizantes o de la deposición de orina del ganado (Byrnes et al., 2017; Subbarao et al., 2009) lo que reduce el impacto ambiente de la ganadería. Este fenómeno también ha sido reportado en diferentes genotipos de la pastura Megathyrsus maximus, que al igual que Urochloa, es bastante utilizada en los trópicos (Villegas et al., 2020).

(Foto: CIAT)

A pesar de la gran cantidad de estudios publicados en los últimos años acerca del fenómeno IBN y su potencial para reducir las emisiones de N2O e incrementar la eficiencia en el uso de nitrógeno (N) tanto en forrajes de Urochloa y Megathyrsus como en otros cultivos de gran interés como el trigo, el arroz o el sorgo (Subbarao et al., 2015), hasta la publicación del presente estudio, ningún otro había evaluado el efecto del IBN sobre las tasas de nitrificación bruta. Estudios previos han evaluado caracterizado la capacidad IBN de diferentes genotipos de Urochloa basados en las tasas netas de nitrificación (Nuñez et al., 2018; Subbarao et al., 2009) [Ver figura 1].

La nitrificación neta es el balance entre la producción bruta de NO3 y el consumo bruto de NO3, lo cual incluye más mecanismos además de la sola inhibición de la nitrificación debida al efecto IBN, puesto que tanto diferentes tasas de amonificación o de inmovilizaciíon de N inorgánico podráin estar afectando la nitrificación neta. Por tanto, la evaluación de las tasas brutas de transformación de N, incluyendo la amonificación bruta de N, la nitrificación bruta y la inmovilización de N, permiten mejorar el entendimiento del impacto de Urochloa con contrastada capacidad IBN sobre el ciclo del N en el suelo.

En un estudio recientemente publicado (Vázquez et al., 2020), hemos evaluado el impacto sobre las transformaciones brutas de N de varios genotipos de Urochloa con contrastante capacidad IBN ubicados en dos parcelas experimentales localizadas en Colombia. Las tasas brutas de transformación de N se llevaron a cabo utilizando el método de “dilución isotópica de 15N”, el cual permite diferenciar entre la amonificación bruta de N (la liberación de NH4+ de la materia orgánica del suelo), la nitrificación bruta (la oxidación de NH4+ a NO3) y la inmovilización heterotrófica de NH4+y NO3. De acuerdo a nuestra hipótesis, los genotipos de Urochloa caracterizados previamente por una alta capacidad IBN deberían mostrar una menor tasa de nitrificación bruta debido a la presencia de brachialactone que inhibe la nitrificación.

(Foto: CIAT)

Contrariamente a lo esparado, nuestros resultados no mostraron una menor nitrificación bruta en los genotipos de alto IBN en comparación con aquellos de bajo IBN. La falta de diferencias tal vez pudo deberse a una limitación de NH4+ que sirviesen como sustrato para la nitrificación, ya que los suelos no fueron fertilizados con N previamente al ensayo. Futuros ensayos debería evaluar las tasas de nitrificación bruta tras la fertilización del suelo con el objetivo de confirmar esta hipótesis.

Sin embargo, sí observamos una mayor inmovilización de N inorgánico en varios genotipos clasificados como alto IBN (CIAT-16888 y CIAT-1149), mientras que otros mostraron una amonificación bruta relativamente baja (CIAT 679). Ambos mecanismos pueden igualmente explicar la menor nitrificación neta y acumulación de NO3 generalmente descrita bajo esos genotipos y también medida en nuestro estudio.

(Foto: CIAT)

Nuestros resultados, por tanto, indicaron que el fenómeno IBN largamente descrito no sólo consiste en una simple inhibición de la nitrificación, sino que los genotipos de IBN caracterizados por su alta capacidad IBN generan suelos con bajos contenidos en NO3mediante varios mecanismos, tales como una mayor inmovilización de N inorgánico por la biomasa microbiana. La inmovilización de N inorgánico por la biomasa microbiana actúa como un reservorio temporal de N hasta su remineralización, cuando vuelve a forma inorgánica y está disponible nuevamente para plantas y otros microorganismos (Kuzyakov and Xu, 2013) [Ver Figura 1]. De esta manera, una mayor inmovlización de N inorgánico reduce las pérdidas de N del suelo.

En su conjunto, los resultados obtenidos, junto con estudios previos, muestran cómo determinados genotipos de Urochloa están adaptados a ecostemas pobres en N como los suelos de las sabanas tropicales, lo que les hace disponer de diversos mecanismos capaces de reducir las pérdidas de N y aumentar la eficiencia de su uso. Por lo tanto, esfuerzos científicos deben realizarse en la búsqueda de genotipos o híbridos de Urochloa y Megathyrsus capaces de aunar a la vez reducidas pérdidas de N con alta productividad y buena calidad forrajera. Así mismo, desde las instituciones, diferentes programas deberían desarrollarse a fin de promover aquellos pastos forrajeros más respetuosos con el medio ambiente y reducir, así, el impacto ambiental del sector ganadero en Latinoamérica.

Arango, J., Ruden, A., Martinez-Baron, D., Loboguerrero, A.M., Berndt, A., Chacón, M., Torres, C.F., Oyhantcabal, W., Gomez, C.A., Ricci, P., Ku-Vera, J., Burkart, S., Moorby, J.M., Chirinda, N., 2020. Ambition Meets Reality: Achieving GHG Emission Reduction Targets in the Livestock Sector of Latin America. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2020.00065

Baptistella, J.L.C., de Andrade, S.A.L., Favarin, J.L., Mazzafera, P., 2020. Urochloa in Tropical Agroecosystems. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2020.00119

Byrnes, R.C., Nùñez, J., Arenas, L., Rao, I., Trujillo, C., Alvarez, C., Arango, J., Rasche, F., Chirinda, N., 2017. Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches. Soil Biol. Biochem. 107, 156–163. https://doi.org/10.1016/j.soilbio.2016.12.029

Kuzyakov, Y., Xu, X., 2013. Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytol. 198, 656–669. https://doi.org/10.1111/nph.12235

Nuñez, J., Arevalo, A., Karwat, H., Egenolf, K., Miles, J., Chirinda, N., Cadisch, G., Rasche, F., Rao, I., Subbarao, G., Arango, J., 2018. Biological nitrification inhibition activity in a soil-grown biparental population of the forage grass, Brachiaria humidicola. Plant Soil 426, 401–411. https://doi.org/10.1007/s11104-018-3626-5

Subbarao, G. V, Nakahara, K., Hurtado, M.P., Ono, H., Moreta, D.E., Salcedo, A.F., Yoshihashi, A.T., Ishikawa, T., Ishitani, M., Ohnishi-Kameyama, M., Yoshida, M., Rondon, M., Rao, I.M., Lascano, C.E., Berry, W.L., Ito, O., 2009. Evidence for biological nitrification inhibition in Brachiaria pastures. Proc. Natl. Acad. Sci. U. S. A. 106, 17302–7. https://doi.org/10.1073/pnas.0903694106

Vázquez, E., Teutscherova, N., Dannenmann, M., Töchterle, P., Butterbach-Bahl, K., Pulleman, M., Arango, J., 2020. Gross nitrogen transformations in tropical pasture soils as affected by Urochloa genotypes differing in biological nitrification inhibition (BNI) capacity. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2020.108058

Villegas, D., Arevalo, A., Nuñez, J., Mazabel, J., Subbarao, G., Rao, I., De Vega, J., Arango, J., 2020. Biological Nitrification Inhibition (BNI): Phenotyping of a Core Germplasm Collection of the Tropical Forage Grass Megathyrsus maximus Under Greenhouse Conditions. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00820

Fertilizantes nitrogenados estabilizados con inhibidores ¿reducen las emisiones directas e indirectas de N2O?

En el contexto actual de cambio climático, el número de publicaciones científicas relacionadas con la emisión de gases de efecto invernadero en sistemas agrícolas ha incrementado exponencialmente. Sin embargo, pocos de estos artículos publicados inciden en la medida de las emisiones indirectas de N2O y en particular en las derivadas del lavado de nitrato. En el Centro de Investigación y Tecnología Agroalimentaria de Aragón hemos evaluado en una estación lisimétrica de drenaje las emisiones de óxido nitroso directas e indirectas (asociadas al lavado de nitrato) cuando se utilizan productos inhibidores aplicados junto a urea en una rotación maíz-maíz-trigo bajo prácticas óptimas de manejo de agua y nitrógeno.

El ensayo contó con dos tipos de suelos (Profundo y Somero) diferenciados por su capacidad de retención de agua disponible (223 mm y 63 mm, respectivamente). Se evaluaron cuatro tratamientos fertilizantes con dosis ajustadas a las necesidades de los cultivos: i) urea (Urea), ii) urea con inhibidor de la nitrificación 3,4 dimetilpirazol fosfato (DMPP), iii) urea con inhibidor de la ureasa triamida N-(n-butil) trifosfórica (NBPT) y iv) urea con inhibidor de la ureasa monocarbamida dihidrogenosulfato (MCDHS).

Las emisiones directas de óxido nitroso (N2O) fueron medidas con la técnica de cámaras estáticas cerradas y analizadas por cromatografía de gases, mientras que las emisiones indirectas se estimaron a partir de la masa de nitrato perdida por drenaje y del factor de emisión (EF5) 0.011 (IPCC, 2019).

Considerando la rotación completa (Fig. 1), el tratamiento DMPP mostró una reducción de emisiones directas acumuladas de N2O respecto al tratamiento Urea del 73% en suelo Profundo (p<0.05) y del 60% en suelo Somero (p=0.06). Aunque los inhibidores de la ureasa (NBPT y MCDHS) no fueron eficaces para mitigar significativamente estas emisiones, sí que lo fueron cuando se relativizaron a la producción de grano, pero solo en el suelo Profundo (45% de reducción). Cabe enfatizar que los tratamientos con inhibidores no incrementaron (p>0.05) el rendimiento en grano respecto a la aplicación tradicional de urea.

Las emisiones indirectas asociadas al lavado de nitrato no mostraron diferencias entre tratamientos en ninguno de los dos suelos para los periodos estudiados (Fig. 1), y fueron el 12% y el 6% de las emisiones totales para el suelo Somero y Profundo, respectivamente.

Figura 1: Emisiones acumuladas directas e indirectas de N2O (kg N ha-1; n=3) durante toda la rotación maíz-maíz-trigo en función del tratamiento fertilizante y para los dos tipos de suelos. Las líneas indican el error estándar, los números el valor de emisión y las letras las diferencias entre tratamientos (test de Tukey, p<0.05)

Al considerar las emisiones totales de N2O (directas+indirectas), las diferencias entre el tratamiento tradicional de urea y el tratamiento DMPP observadas en las emisiones directas quedaron estadísticamente difuminadas, se observó una reducción del 73% (p=0.053) en suelo Profundo y del 54% (no significativa) en suelo Somero.

En conclusión, el inhibidor DMPP fue capaz de mitigar las emisiones directas de N2O en comparación con la aplicación tradicional de urea, mientras que los inhibidores de la ureasa (NBPT y MCDHS) no permitieron una reducción de las mismas. Por el contrario, ninguno de los tratamientos con inhibidores lograron disminuir las emisiones indirectas de N2O asociadas al lavado de nitrato.

Autores del post:

Noemí Mateo Marín, Dolores Quílez y Ramón Isla.

Referencia al artículo:

Mateo-Marín, N., Quílez, D., Guillén, M., Isla, R., 2020. Feasibility of stabilised nitrogen fertilisers decreasing greenhouse gas emissions under optimal management in sprinkler irrigated conditions. Agric. Ecosyst. Environ. 290, 106725. doi:10.1016/j.agee.2019.106725

Referencias:

IPCC, 2019. Chapter 11: N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application, in: Calvo-Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize S., Osako, A., Pyrozhenko, Y., Shermanau, P., and Federici, S. (Eds.), 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Switzerland, 48 pp.

Una mirada al exterior: Argentina, cultivos de cobertura y emisiones de N2O

Los colegas investigadores de Sudamérica están realizando trabajos muy relevantes en el ámbito de la mitigación del cambio climático en sistemas agrarios y ganaderos. Hoy nos acercamos a Argentina para conocer un trabajo sobre emisiones de N2O en cultivos de cobertura. El trabajo ha sido difundido a través la revista “Nuestro Suelo”, de la Asociación Argentina de Ciencia del Suelo. Aquí tenéis también el link del artículo original y del resumen.

El trabajo fue realizado por un grupo de investigadores del Instituto de Clima y Agua de INTA Castelar y del Grupo de Gestión Ambiental de INTA Pergamino. Ellos están evaluando técnicas de manejo con potencial de mitigar las emisiones de N2O en sistemas agrícolas extensivos de Argentina, entre las que se encuentran el uso de distintos sistemas de fertilización nitrogenada y la incorporación de distintas especies como cultivos de cobertura.

EFECTO DE LA MEZCLA DE CULTIVOS DE COBERTURA SOBRE LAS EMISIONES DE N2O EN SISTEMAS AGRÍCOLAS

Sigue leyendo

Training school on measuring greenhouse gases in agricultural systems

The COST Action LivAGE (http://cost-livage.eu) and the Network NUEVA (Network for Updating Emission Values in Agriculture) (www.rednueva.es) organize a training school in Lugo (Spain) during 28-29 March 2019 (University of Santiago de Compostela, Lugo site). The training school focuses on measuring greenhouse gas emissions and will take place immediately after the annual workshop of the Spanish network Red REMEDIA.

The aim of the training school is to offer comprehensive decision making criteria to identify the best measurement techniques in different research scenarios and practical demonstration of the use of a range of measurement techniques. The program involves two sessions dealing with both animal and agro-forestry systems in which an introductory talk will be followed by practical demonstration of a range of measuring techniques particularly suitable in Southern Europe.

The training school is limited to 20 trainees that will receive funding to cover traveling and accomodation costs.

Sigue leyendo

Artículo| La siembra directa reduce la emisión de óxido nitroso del suelo por kg de cebada producida en los secanos mediterráneos

El óxido nitroso (N2O) es un gas de potente efecto invernadero cuya emisión se debe, principalmente, a la utilización de fertilizantes nitrogenados en la agricultura. No obstante, el nitrógeno es un nutriente clave para mantener el rendimiento potencial de los agroecosistemas.

Los sistemas de cultivo cerealistas de secano Mediterráneo presentan una escasa productividad potencial debida, mayormente, a limitaciones hídricas. La baja rentabilidad de estos sistemas ha llevado a un incremento de la adopción de prácticas de laboreo de conservación (mínimo laboreo y siembra directa) por parte de los agricultores. Estos sistemas de laboreo presentan ventajas en lo que a conservación del agua en el suelo se refiere (ver, por ejemplo, Lampurlanés et al. 2016), beneficiando el cultivo, aunque con un mayor riesgo potencial de emisión de N2O del suelo. Actualmente, la actividad agrícola debe mantener su rentabilidad satisfaciendo la demanda de alimentos y mitigando el impacto ambiental. Por ello, el uso de indicadores conjuntos de productividad y emisión de gases de efecto invernadero, como la emisión de N2O por unidad de producto (del inglés yield-scaled N2O emissions), representa una herramienta de gran interés para armonizar ambas necesidades.

Sigue leyendo

Conclusiones del Foro Mediterráneo de Producción Ecológica y Cambio Climático

Este post tiene como objetivo sintetizar brevemente los principales puntos surgidos del Foro Mediterráneo: Producción Ecológica y Cambio Climático celebrado en Sevilla el pasado 15 de octubre y organizado por la asociación Valor Ecológico, ECOVALIA, en el que Remedia tuvo una importante presencia de forma directa y también a través de l@s investigador@s que expusieron sus diferentes puntos de vista e investigaciones.

Sigue leyendo

NOTICIA: La Red de Excelencia NUEVA se pone en marcha.

Esta semana se ha celebrado la primera reunión de la Red de Excelencia NUEVA (Network for Updating Emission Values in spanish Agriculture, AGL2017-90924-REDT). Los avances de esta Red serán de gran interés para las Administraciones y los sectores productivos.
Sigue leyendo

Artículo| ¿Qué fertilizante aplicar en cultivos de secano del centro de la Península? La elección sostenible

Muy bonitos esos gráficos, ¿Pero por qué no nos decís que tenemos que echar en cada cultivo? Seguro que muchos/as científicos/as del campo de la agronomía nos hemos enfrentado a este tipo de preguntas cuando hemos participado de jornadas o conferencias en un ámbito más divulgativo, con profesionales del sector. O incluso con representantes de las Administraciones. Y razón no les falta, muchas veces nos vamos con la sensación de que nuestras publicaciones, pese a su valía científica, adolecen de conclusiones prácticas, aplicabilidad o una visión más global (y no sólo a escala local o de un cultivo concreto). Estas preguntas, y otras similares, nos las formulan en relación a muchas estrategias de manejo controvertidas, especialmente desde el punto de vista económico. Por ejemplo, los inhibidores de la nitrificación y/o ureasa… Eso de las emisiones está muy bien, pero ¿voy a tener más kilos de grano?” “¿Cuánto me va a costar eso?” “¿Funciona en todos los cultivos, en años húmedos y secos?”.
Sigue leyendo

Artículo| Impacto de los micronutrientes en el ciclo del N: pequeña dosis, gran efecto

Las estrategias de mitigación de emisiones procedentes de cultivos agrícolas no inundados se centran fundamentalmente en el N2O, un gas de efecto invernadero (GEI) mucho más potente y persistente que el dióxido de carbono (CO2) o el metano (CH4). Puesto que el N2O procede de la fertilización aplicada a los cultivos (tanto orgánica como mineral), las estrategias de mitigación más efectivas se basan en un manejo eficiente de la fertilización nitrogenada: adecuada dosis, localización, fraccionamiento y fuente (las “4R” en inglés). Otras estrategias de mitigación de N2O evaluadas se basan en el manejo del agua (en sistemas irrigados) o la agricultura de conservación (laboreo de conservación y rotación de cultivos). Sin embargo, la interacción del nitrógeno (N) con otros macronutrientes y especialmente con micronutrientes (como cobre, Cu, hierro, Fe, o zinc, Zn) apenas se ha estudiado.

ciclo-n.png

Esquema del Ciclo del N y genes implicados. Fuente: Hallin et al. (2017).

 

Maximizar la eficiencia en el uso del N (EUN) es una estrategia clave para reducir las pérdidas de N al medioambiente, entre ellas las emisiones de N2O (Abalos y col., 2014). Sincronizar el aporte de N con la demanda por parte del cultivo nos ayuda a lograr este objetivo. Sin embargo, no se puede obviar la influencia de otros macro y micro nutrientes en la nutrición nitrogenada, puesto que la carencia de uno o más de los nutrientes esenciales limita el crecimiento y desarrollo del cultivo, pese al adecuado suministro de N. Además, las sinergias existentes entre el N y otros macro o micronutrientes pueden favorecer un incremento de la eficiencia en el uso de dichos nutrientes. En el caso del N, esto puede traducirse en una reducción en el N2O emitido (tal y como se ha indicado anteriormente). Y en el caso de los micronutrientes, en un incremento en la concentración en planta (lo que se conoce como biofortificación).

El Zn es uno de los micronutrientes principales para la salud humana. Su aporte se asocia con reducción de la incidencia de enfermedades infecciosas como neumonía, especialmente en niños y áreas con insuficiente aporte de este elemento, baja biodisponibilidad o cultivos sensibles (ej., trigo, arroz o maíz). La fertilización foliar y/o vía suelo con Zn en estos cultivos y/o suelos con baja biodisponibilidad (por ejemplo, suelos básicos o alcalinos)  es esencial para lograr el incremento de la calidad de la cosecha a través de la biofortificación y por tanto, para evitar posibles carencias en la dieta (Cakmak y col., 2016).

Investigadores de la Universidad Politécnica de Madrid (UPM) pusieron en marcha un ensayo de campo evaluando distintas fuentes de Zn: un fertilizante convencional como el ZnSO4, una mezcla de quelatos sintéticos DTPA-HEDTA-EDTA, Zn aplicado con ácidos húmicos y fúlvicos y Zn aplicado con lignosulfonato. En el ensayo se evaluaron también 3 dosis de N: 0, 120 y 180 kg N/ha. Todas las fuentes de Zn se aplicaron vía suelo/foliar por medio de un pulverizador, en una solución junto con el fertilizante nitrogenado (urea). Si bien el objetivo inicial era estudiar la sinergia entre ambos nutrientes en base a la asimilación de N y biofortificación en Zn, se decidió también medir la emisión de GEI (N2O, CH4 y CO2), por medio de cámaras estáticas y cromatografía de gases, y estudiar la abundancia de genes de microorganismos implicados en la emisión de N2O (en colaboración con la Estación Experimental del Zaidín, en Granada).

¿Por qué decidieron en la UPM medir las emisiones en este ensayo, cuando nadie prácticamente lo había hecho?

Tres argumentos lo explican: 1) la mejora de la nutrición nitrogenada como mecanismo para reducir las emisiones (si la planta toma más, se pierde menos); 2) el efecto de micronutrientes como el Zn en las emisiones de N2O y CH4 (al actuar como co-factores enzimáticos, Glass y Orphan, 2012); y 3) el efecto de los quelatos, especialmente del sintético DTPA-HEDTA-EDTA, en la nitrificación y por tanto en las emisiones. Este último hecho se basa en que una parte importante de los inhibidores de la nitrificación comerciales (por ejemplo, DCD o DMPP) actúan como agentes quelantes de metales que son co-factores enzimáticos en la nitrificación, fundamentalmente el Cu (Ruser y Schulz, 2015). Además, la medida conjunta de emisiones-rendimiento y calidad de las cosechas es fundamental a la hora de elegir estrategias de mitigación efectivas (win-win) y potencialmente adoptables por los agricultores.

Resultados

Los resultados confirmaron las sospechas iniciales: algunos de los tratamientos tuvieron un efecto significativo en las emisiones de N2O. Estos resultados se achacaron al efecto “fuente de Zn”, por encima de la biodisponibilidad del micronutriente o el efecto sinérgico Zn-N. Así, la aplicación de Zn con ácidos húmicos y fúlvicos incrementó la abundancia total de bacterias y de los genes implicados en la nitrificación y desnitrificación, provocando un incremento en la emisión de N2O. Por el contrario, el quelato sintético DTPA-HEDTA-EDTA mitigó las emisiones de N2O en más de un 20%, por medio de la quelación de Cu (cofactor enzimático en la nitrificación y desnitrificación). Esto quedó confirmado por la disminución del contenido de Cu asimilable en suelo, así como de las abundancias totales de genes implicados en ambas reacciones del ciclo de N. Sorprendentemente, la abundancia del gen nosZ, implicado en la reducción del N2O a N2, aumentó en más de un 30% con la aplicación del quelato sintético. Además, este tratamiento redujo significativamente la respiración del suelo (emisión de CO2), sugiriendo un efecto generalizado sobre la biomasa microbiana. Los mecanismos implicados en estos resultados deben ser estudiados en otros agrosistemas (ej. cultivos irrigados de verano como el maíz), puesto que los resultados en cultivos inundados (arrozales) son opuestos a los obtenidos por el equipo de la UPM en condiciones de secano y clima Mediterráneo (Pramanik y Kim, 2017).

Bild1

Emisiones de N2O tras la aplicación de los distintos tratamientos

 

pca

Análisis de Componentes Principales de las distintas variables evaluadas en el estudio.

 

Conclusiones

Los resultados de este ensayo demuestran que la aplicación de quelatos, pese a ser en muy pequeña dosis (0.36 kg Zn/ha), afecta significativamente a la emisión de N2O. El uso de quelatos sintéticos en cultivos sensibles al Zn (como el trigo panadero) y suelos con déficit en este micronutriente, junto con una dosis de N de 120 kg/ha es una estrategia win-win que minimizó las emisiones de N2O por kg de cosecha e incrementó el contenido de Zn en grano. El efecto sobre reacciones (desnitrificación) o microorganismos no-objetivo deberá, por otra parte, evaluarse en ensayos futuros para conocer al detalle el efecto de estos productos en la calidad biológica del suelo, tal y como se estudia para los inhibidores de la nitrificación o ureasa.

Autor: Guillermo Guardia Vázquez, Doctor Ingeniero Agronomo (UPM). guillermo.guardia@upm.es

Link al artículo

 

REFERENCIAS

Abalos, D., Deyn, G. B., Kuyper, T. W., Van Groenigen, J.W., 2014. Plant species identity surpasses species richness as a key driver of N2O emissions from grassland. Glob. Change Biol. 20(1), 265-275, 2014.

Cakmak, I., McLaughlin, M.J., White, P., 2016. Zinc for better crop production and human health.

Glass, J., Orphan, V.J., 2012. Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front. Microbiol. 3, 61.

Hallin, S., Philippot, L., Löffler, F.E., Sanford, R.A., Jones, C.M., 2017. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 26, 43-55.

Pramanik, P., Kim, P.J., 2017. Contrasting effects of EDTA applications on the fluxes of methane and nitrous oxide emissions from straw-treated rice paddy soilsJ. Sci. Food Agric. 97, 278-283.

Ruser, R., Schulz, R., 2015. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. J. Plant Nutr. Soil Sci. 178, 171-188.