Siglas, futuro y cambio climático

Si predecir los efectos y la magnitud del cambio climático en el futuro es complicado, predecir cómo nos vamos a comportar en el futuro los seres humanos para mitigarlo o adaptarnos es más bien asunto de bola de cristal. Por eso dentro del marco del IPCC (la comisión internacional de científicos que se dedican a evaluar el estado de la cuestión del conocimiento sobre el cambio climático) se han creado escenarios de futuro de referencia para que sirvan como base para estudiar impactos del cambio climático y su magnitud.  Son los Representative Concentration Pathways y los Shared Socio-economic Pathways, RCP y SSP por sus siglas en inglés.

RCP- el alcance del cambio climático (más información en van Vuuren et al. 2011)

Los RCP representan diferentes escenarios de intromisión de los gases de efecto invernadero (GEI) en el balance del calor que entra y sale en el sistema troposfera-superficie de la Tierra. Este flujo de calor se llama “radiative forcing” y le afectan factores tanto naturales como antropogénicos. Por ejemplo, aumenta si aumentan las concentraciones de gases de efecto invernadero y también cambia según la incidencia de la luz solar en el planeta o por cambios que afectan la energía absorbida por la superficie de la tierra (por cambio de uso del suelo, por ejemplo). Para los escenarios se utilizan los valores de radiative forcing relativos a las condiciones preindustriales (1750), no incluye albedo o polvo y se expresa en Watts por metro cuadrado (W/m2).

¿Por qué se utiliza este concepto y no otro más conocido como la concentración de CO2 para definir los escenarios?: La verdad es que las trayectorias de los escenarios son muy parecidas a las concentraciones atmosféricas de CO2 (Figura 1), porque de todos los factores que aumentan el radiative forcing son los gases de efecto invernadero los que más peso tienen y dentro de ellos, el CO2. Los científicos del IPCC utilizan el concepto de “radiative forcing” porque al incluir todos los factores es más exacto y más útil para aplicarlo en los modelos de convección atmosférica.

En total hay cuatro escenarios RCP y cada uno corresponde al radiative forcing proyectado para final del siglo XXI: 2.6, 4.5, 6 y 8.5 W/m2. El escenario de 2.6 es en el que menos aumenta la temperatura, el de 8.5 el que más. Para más detalles, la NASA ha elaborado unos espectaculares mapas globales de variación de temperatura en base a estos cuatro RCPs.

La gracia de estos escenarios es que no sólo han estado trabajando en ellos expertos en dinámica atmosférica sino de otras muchas disciplinas y han utilizados modelos que integran otras variables además de la atmosférica para definir sus características. No se trataba de hacer una predicción, sino unos escenarios con una lógica interna compartida para poder trabajar como base para hacer simulaciones de magnitudes de impacto, políticas de mitigación etc. Para hacernos una idea el RCP2.6 lo simularon teniendo en cuenta la implementación activa y global de políticas de mitigación, mientras que en el RCP8.5 no hay ni una. Los otros dos escenarios son situaciones intermedias. Población y consumo de energía fósil son otras de las variables de entrada que se tuvieron en cuenta.

El resultado de todo este trabajo es el que se puede ver en la figura 1. Los modelos dan información de los tres principales factores que influyen en el radiative forcing:

  1. Emisiones de gases de efecto invernadero, por ejemplo, la concentración atmosférica de CO2, como en la figura 1.
  2. Contaminación atmosférica (SO2, NOx, etc), que disminuye paralelamente en todos los escenarios, aunque en menor medida en el 8.5.
  3. Usos del suelo, en 2.6 se intensifica y se aumenta la superficie para producir agrocombustibles, mientras que en el 8.5 el aumento de superficie cultivada es proporcional al aumento poblacional. Rompiendo la dinámica que llevaban hasta ahora, en los escenarios intermedios se consideran reducciones del área agrícola y aumento de la superficie forestal.

galan1

Figura 1. Tendencias del radiative forcing (izquierda) según el escenario de RCP. Concentración atmosférica de CO2 (derecha) según el escenario de RCP.  Fuente: adaptado de van Vuuren et al. (2011).

Dentro de la lógica interna de los escenarios la variable que principalmente determina la trayectoria del radiative forcing es el consumo de combustibles fósiles. En la figura 1 se observa cómo el radiative forcing disminuye en algunos de ellos, ¿quiere decir esto que en los escenarios de futuro se contempla reducción del consumo de combustibles fósiles? La respuesta es no, sólo un poco en el escenario RCP2.6. La disminución del radiative forcing (y de la concentración de CO2) en los escenarios 2.6, 4.5 y 6 tiene que ver con que en el diseño de los escenarios se han incluido sistemas de captación y almacén de carbono. Hay mucha controversia con el desarrollo de estos sistemas a gran escala porque compiten con recursos (tierra, agua, capacidad de almacenaje, costes), con la seguridad alimentaria, con la biodiversidad e incluso con otras medidas de mitigación. Además, el éxito de estas medidas es incierto y entraña muchos riesgos (Fuss et al. 2014).

Es importante entender que los escenarios no son predicciones, sino el resultado de resumir las miríadas de escenarios de cambio climático que aparecen en la literatura. Esta es precisamente la función del IPCC, revisar la literatura científica sobre cambio climático, resumirla y publicarla en unos informes que representan el estado de la cuestión científico del momento en que se hizo la revisión. Estas revisiones se hacen cada cinco o seis años. Así que puede ser que con el tiempo (no mucho) el RCP2.6 se vea como muy optimista y el 8.5 como el más probable si todo sigue igual.

SSP- futuros socioeconómicos (más información en O’Neill et al. 2017)

Los desafíos para la implementación de medidas de adaptación y mitigación dependen de las características de la sociedad. ¿Cómo saber qué tipo de sociedad tendrá que enfrentarse a al cambio climático? ¿Qué medidas de adaptación considerará aceptables? ¿Cuántos recursos dedicará a frenar las emisiones? Para reflejar la magnitud del desafío de adaptarse y mitigar el cambio climático según el perfil socioeconómico de la sociedad también se han creado escenarios, los Shared Socio-economic Pathways (SSP). Estos escenarios se refieren únicamente a las características socioeconómicas de la sociedad, las relacionadas con el clima están exentas.  Por ejemplo, no va a adaptarse y mitigar el cambio climático de la misma manera una sociedad igualitaria, cooperativa y con grandes inversiones en fuentes de energía renovables (SSP1) que una sociedad desigual, cerrada y cuya principal fuente de energía sean los combustibles fósiles (SSP3).

Así como los RCPs son de naturaleza cuantitativa, los SSP son cualitativos. Son narrativas de diferentes alternativas de futuro, es decir, una especie de guiones de película que dan la pauta del comportamiento de los factores que dificultan o facilitan la adaptación y la mitigación. Estos factores tienen que ver con el crecimiento económico, la integración regional, la sostenibilidad social (equidad y governanza) y la sostenibilidad ambiental (conciencia ambiental y estilos de vida). La figura 2 representa de manera esquemática los SSPs respecto a la dificultad de la sociedad para adaptarse o mitigar el cambio climático.

galan2

Figura 2. Los cinco SPPs representando las diferentes combinaciones de desafíos para adaptarse o mitigar el cambio climático. Fuente: adaptado y traducido de O’Neill et al. (2017).

El argumento de cada escenario es el siguiente:

SSP1. Tecnologías respetuosas con el medio ambiente, energías renovables, instituciones que facilitan la cooperación internacional, baja demanda energética. Mejora del bienestar humano, flexibilidad institucional a todos los niveles.

SSP2. Desarrollo moderado como tendencia global aunque muy desigual entre e inter países.

SSP3. Desarrollo y conciencia ambiental limitados. El crecimiento de la población se estanca en países desarrollados. Dependencia de combustibles fósiles, lento cambio técnico y dificultad para conseguir cooperación internacional. Desarrollo humano limitado, bajo crecimiento de rentas, falta de instituciones efectivas (sobre todo para actuar entre regiones).

 SSP4. Desarrollo de  tecnologías low-carbon y una sociedad internacional bien integrada que permite su generalización. Políticas ambientales centradas en problemáticas locales en las áreas de nivel de renta medio-alto y grandes proporciones de población con niveles bajos de desarrollo y con difícil acceso a instituciones que lidien con estrés ambiental o económico.

SSP5. Fuerte dependencia de combustibles fósiles y falta de conciencia ambiental global. Desarrollo humano alto, crecimiento económico e infraestructuras potentes.

El objetivo de estos SSPs no es la comunicación entre científicos y políticos, sino que en combinación con los RCPs, sirvan como una herramienta para la comunidad científica, algo así como un marco común de referencia que puede ser actualizado, para poder llevar a cabo análisis integrados que sean de utilidad para el desarrollo de políticas climáticas. Por ejemplo, si quisiéramos hacer escenarios de medidas de adaptación de subida del nivel del mar, en el SPP1 contemplaríamos la opción de recuperar los ecosistemas de marismas, mientras que en el SPP3 como mucho contemplaríamos un muro en la costa y que las rentas más altas se irían a vivir a las cimas de las montañas y tocarían madera…

Además de los RCPs y los SSPs, se están desarrollando los representative agricultural pathways (RAPs), que están centrados en los impactos del cambio climático en la agricultura. Así que es posible que dentro de poco me vea escribiendo un post parecido a este…

Para acabar, estos escenarios están hechos por y para ser usados por modelizadores. Un modelizador es un investigador que hace experimentos sin un laboratorio. Tiene un mundo artificial (un modelo) lleno de efectos (ecuaciones) que interaccionan entre sí. Para hacer funcionar los modelos y experimentar con ellos hace falta tomar muchas decisiones, así que trabajos como el diseño de estos escenarios, aunque no son perfectos, son un paso para la transparencia del proceso.

Que tantos científicos hayan conseguido ponerse de acuerdo en un marco de análisis no es nada corriente y seguro que el esfuerzo ha sido enorme. Este es el pensamiento esperanzador que contrasta con la inquietud de observar los escenarios de las figuras 1 y 2 porque, aunque no sean para predecir el futuro, no puedo evitar preguntarme ¿cuál será el más probable?

Fuss, Sabine, Josep G. Canadell, Glen P. Peters, Massimo Tavoni, Robbie M. Andrew, Philippe Ciais, Robert B. Jackson, et al. 2014. «Betting on negative emissions». Nature Climate Change 4 (10): 850-53. doi:10.1038/nclimate2392.

O’Neill, Brian C., Elmar Kriegler, Kristie L. Ebi, Eric Kemp-Benedict, Keywan Riahi, Dale S. Rothman, Bas J. van Ruijven, et al. 2017. «The Roads Ahead: Narratives for Shared Socioeconomic Pathways Describing World Futures in the 21st Century». Global Environmental Change 42 (enero): 169-80. doi:10.1016/j.gloenvcha.2015.01.004.

Vuuren, Detlef P. van, Jae Edmonds, Mikiko Kainuma, Keywan Riahi, Allison Thomson, Kathy Hibbard, George C. Hurtt, et al. 2011. «The Representative Concentration Pathways: An Overview». Climatic Change 109 (1-2): 5-31. doi:10.1007/s10584-011-0148-z.

Dónde encontrar la base de datos de RCPs http://www.iiasa.ac.at/web-apps/tnt/RcpDb/

Dónde encontrar la base de datos de SPPs https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about

Elena Galán del Castillo (Basque Centre For Climate Change, BC3)

elena_galan

logo_bc3

 

 

¿Como influye la forma de manejo en la emisiones asociadas a residuos orgánicos sólidos?

El proceso de degradación de residuos orgánicos se ha identificado como una fuente importante de emisiones, contribuyendo a impactos ambientales a escala regional (eutrofización, acidificación) y global (cambio climático). Los principales flujos de residuos orgánicos se generan tanto en zonas urbanas e industriales, como ligados a sistemas de producción ganadera; gestionándose a menudo en forma sólida, lo cual facilita su manejo y transporte dentro del sistema de gestión. No obstante, debido a la naturaleza heterogénea de estos residuos, durante su tratamiento es inevitable que se generen ciertas cantidades de amoníaco (NH3), metano (CH4) y óxido nitroso (N2O) que son emitidas a la atmósfera. Por lo tanto la gestión sostenible de los residuos orgánicos debe implicar prácticas que minimicen estas emisiones a la vez que garanticen el valor agronómico del producto final.

En este contexto, mediante un reciente trabajo publicado en la revista “Global Change Biology” varios investigadores compañeros de la Red Remedia (BC3, UMH y UPO) hemos unido fuerzas en un intento de recopilar y analizar de forma sistemática la información científica disponible sobre emisiones gaseosas procedentes del tratamiento de residuos orgánicos en forma sólida. El principal objetivo ha sido identificar aquellas estrategias con potencial para reducir emisiones y cuantificar la magnitud de reducción que se puede alcanzar con cada una de ellas. Para ello, se ha llevado a cabo un meta-análisis con los datos recopilados de un total de 76 artículos de investigación, a través del cual se ha examinado la influencia de una selección de prácticas de manejo (compostaje en pila volteada, compostaje por aeración forzada, adición/sustitución de estructurante, cubrimiento con lona, compactación) con respecto a una estrategia control basada en el almacenamiento convencional de residuos sólidos sin aplicar un tratamiento específico.

Pardo G,, Moral R, Aguilera E, del  Prado A. 2015. Gaseous emissions from management of solid waste: A systematic review. Global Change Biology. 21, 1313-1327. (acceso abierto al artículo)

Fig1

Principales estrategias de gestión analizadas en el estudio: compostaje en pila volteada (a), compostaje por aireación forzada (b), cubrimiento con lona (c) y utilización de material estructurante (d)

Efecto del compostaje en las emisiones de GEI

Los sistemas de compostaje conllevan una mejora de la aireación de la pila, asegurando el suministro de oxígeno (O2) y promoviendo la degradación de la materia orgánica en condiciones aerobias. De acuerdo a los resultados del meta-análisis, en el caso del compostaje en pila volteada se observó una influencia consistente hacia reducir las emisiones de GEI (CH4, N2O) en comparación con el almacenamiento convencional (Fig. 1ab). En cambio para el compostaje por aireación forzada no se encontró un efecto significativo. Las diferencias en este sentido entre los dos métodos de compostaje estudiados se han atribuido principalmente a la influencia del volteo en la homogeneización del residuo. Esta práctica evita la estratificación, lo que previene la aparición de zonas anaerobias y gradientes de O2, que dan lugar a la formación de CH4 y N2O respectivamente.

Por otro lado, ambos métodos tienden a aumentar las emisiones de NH3 con respecto al almacenamiento convencional (Fig. 1c), si bien la influencia en el caso del compostaje por aireación forzada es más acusada (121%) que para la pila volteada (54%). Este efecto es consecuencia del aumento de temperatura generado por la actividad biológica aeróbica, que se ve favorecida en los sistemas de compostaje. No obstante, con respecto a las pérdidas totales de N, no se encontraron diferencias significativas para el caso del compostaje por pila volteada (Fig. 1d), lo que sugiere que este método podría promover una serie de mecanismos que contrarrestan en cierta medida el aumento en las pérdidas por volatilización de NH3.

Fig2

Fig3

Figura 1 Efecto de estrategias de gestión en las emisiones acumuladas de (a) CH4-C, (b) N2O-N, (c) NH3-N y (d) N total en relación con el tratamiento control (almacenamiento convencional).

Efecto medio e intervalos de confianza (95%). Sobre las barras se indica el número de estudios y de observaciones (entre paréntesis) utilizados en cada caso.

¿Qué efecto tiene compactar o cubrir la pila en las emisiones de GEI?

Este tipo de prácticas implican una restricción en el suministro de O2 dentro de la pila, lo que limita la actividad biológica aerobia y evita que se alcancen temperaturas elevadas. Los resultados del meta-análisis no indican ningún efecto significativo de estas estrategias en las emisiones de GEI en comparación con el almacenamiento convencional (Fig 1ab); mientras que sí se observa una tendencia clara a disminuir las pérdidas en forma de NH3 y a promover una mayor conservación de N total en el residuo (Fig 1cd).

Si bien este efecto es positivo, al aumentar el valor fertilizante del producto obtenido, es importante considerar que estas prácticas pueden implicar también ciertas desventajas, en términos de estabilidad e higiene del producto final, que pueden limitar su aplicación agronómica. Por ejemplo, la destrucción de patógenos se ve comprometida al no alcanzarse elevadas temperaturas que permitan la higienización del material (Fig 2a). Además, al no transcurrir una descomposición biológica intensa (Fig 2b) el producto final suele ser más inestable, pudiendo contener cantidades sustanciales de C degradable. Cuando estas enmiendas son aplicadas al suelo, se pueden promover procesos de desnitrificación, que dan lugar a N2O; a la vez que los microorganismos del suelo pueden ser estimulados a competir por el N, provocando inmovilización y afectando en definitiva a la disponibilidad de nutrientes para la planta (Petersen and Sommer, 2011).

Fig4

Fig5

Figura 2 Efecto de la estrategias de manejo en (a) la temperatura alcanzada durante el tratamiento y (b) emisiones acumuladas CO2-C en relación con el tratamiento control (almacenamiento convencional). Efecto medio e intervalos de confianza (95%). Sobre las barras se indica el número de estudios y de observaciones (entre paréntesis) utilizados en cada caso.

Utilización de agentes estructurantes

La porosidad y estructura física de la pila de residuos se puede mejorar aumentando la relación de material de encamado con respecto al purín –en el caso de una explotación ganadera- o mediante la utilización de un agente estructurante específico que contenga una cantidad elevada de fibra y compuestos recalcitrantes. De acuerdo al meta-análisis realizado, esta estrategia tiende a reducir significativamente las emisiones de CH4 y N2O (Fig. 1ab). La mejora en la estructura fomenta la aireación natural y el suministro de O2 en la pila, evitando de este modo la aparición de entornos anaeróbicos que dieran lugar a CH4. Del mismo modo, aunque aún podría producirse N2O vía nitrificación, estas condiciones tienden a inhibir la desnitrificación y con ello a reducir las emisiones globales de N2O.

Paralelamente esta estrategia parece implicar un incremento en las emisiones de NH3, con un efecto medio en torno al 35%; si bien no se encontró un efecto significativo en las pérdidas totales de N (Fig. 1cd). Es probable que la adición o sustitución de estructurante aumente la relación C/N del residuo a tratar, lo que podría fomentar la inmovilización de NH4+-N. Sin embargo el C añadido a través de los materiales estructurantes suele ser muy recalcitrante, con lo cual no es esperable una disminución sustancial de las pérdidas de NH3-N a consecuencia de la inmovilización del N. Otros mecanismos, como una disminución en la cantidad de lixiviados, o la reducción de otro tipo de emisiones (N2O, N2) puede que jueguen una papel más relevante a la hora de contrarrestar las pérdidas por NH3, dando lugar a un efecto nulo en las pérdidas totales de N.

Implicaciones a nivel de factores de emisión (EF) de la metodología IPCC

Los resultados obtenidos a partir de esta revisión fueron tratados y analizados con el fin de aportar información que pudiera servir en un futuro para refinar los factores de emisión actuales de la metodología del IPCC (Tier1). Con este objetivo, para el caso del CH4 se compararon las emisiones medidas en los estudios seleccionados con la correspondiente estimación de acuerdo a las directrices del IPCC. En general los resultados de esta comparativa mostraron estar dentro del mismo rango (Fig. 3), si bien se observa cierta tendencia a subestimar las emisiones de CH4 en el caso de los sistemas de compostaje.

Fig6

Figura 3 Rango de emisiones de CH4-C observadas en los estudios seleccionados en el trabajo de revisión en comparación con las estimadas para los mismos estudios de acuerdo a la metodología IPCC (IPCC,2006).

taskforceIPCC

En lo que se refiere a las emisiones de N2O, a pesar de que no se encontró un efecto significativo, los resultados del meta-análisis indican una tendencia clara a producir emisiones más bajas de N2O en sistemas de compostaje volteado en comparación con un almacenamiento convencional. Por lo tanto, no existiría una evidencia consistente para asumir un EF más alto para el compostaje en pila volteada ((0.01 kg N2O–N kg1 N excreted) frente al almacenamiento sólido ((0.005 kg N2O–N kg1 N excreted) tal y como se indica actualmente en la metodología IPCC (IPCC, 2006).

Fig7

Tabla 1 Factores de emisión de N2O para almacenamiento sólido y compostaje en pila volteada de acuerdo a la metodología IPCC y rango de resultados obtenido a partir de los estudios seleccionados en el presente trabajo de revisión.

Conclusiones

A modo de resumen se podría decir que los resultados obtenidos mediante el meta-análisis indican que mejorar la estructura de la pila por adición/sustitución de agentes estructurantes reduce significativamente las emisiones de N2O y CH4, aunque aumenta las pérdidas por volatilización de NH3 (35%). Con respecto al compostaje, solo los sistemas volteados mostraron potencial para reducir las emisiones de GEIs, mientras que ambos métodos tienden a incrementar las emisiones de NH3. Las prácticas basadas en la restricción de oxígeno, como cubrir o compactar el residuo, no mostraron efectos significativos en las emisiones de GEIs, si bien redujeron sustancialmente otras pérdidas en forma de N.

Los resultados indican que las estrategias que minimizan las emisiones de GEI suelen involucrar un riesgo de “pollution swapping” en forma de NH3, subrayando la importancia de un adecuado –que no exhaustivo- control del tratamiento (en cuanto a condiciones de partida y evolución del proceso) y reforzando la necesidad de utilizar enfoques holísticos e integrales al desarrollar o planificar estrategias de gestión de residuos orgánicos.

Referencias

IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, (eds Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K). Prepared by the National Greenhouse Gas Inventories Programme. IGES, Hayama, Japan.

Petersen, S. O., & Sommer, S. G. (2011). Ammonia and nitrous oxide interactions: Roles of manure organic matter management. Animal Feed Science and Technology, 166, 503-513.
Este trabajo forma parte de la tesis doctoral de Guillermo Pardo (BC3), codirigida por Agustin del Prado (BC3)  y Raul Moral (UMH)   y se presentará por cierto en la sesión de posters del próximo REMEDIA2015. ¡No te lo pierdas!
 

Nuevo boletín del grupo de ganadería de la Alianza (Octubre 2013)

Desde REMEDIA os invitamos a abrir y leer la última edición del Boletín de la Alianza Global de Investigación – Grupo de Investigación en Ganadería.

Haga clic aquí para leer el boletín online.

El boletín es una herramienta de intercambio de información para mantenerse al día con el trabajo, los eventos y los vínculos del Grupo.

Dentro de esta edición se incluye:

-Los detalles de las reuniones celebradas en Dublín, Irlanda, durante la semana de la conferencia GGAA 2013 (junio 21 a 29) (proximamente haremos una reseña específica en el BLOG), incluyendo la reunión del Grupo de Ganadería (junio 28-29) (de esto ya hemos hablado en el BLOG)
-Los detalles de la reunión del Consejo de la Alianza Global de Investigación, celebrada en Montevideo, Uruguay (junio 17-19)
-Actualizaciones de las redes de investigación del Grupo de Investigación en Ganadería

Sólo puntualizar la errata que el boletín tiene en su segunda página al no incluir a España como miembro participante de la reunión del Grupo de Ganadería. Afortunadamente, no sólo se menciona a la red REMEDIA dentro de las actas sino que también tuvimos la prueba gráfica que tuvimos 3 compañeros en las reuniones (subgrupos, grupo general).

Ampliado el plazo de presentación de abstracts the REMEDIA workshop 2013

Estimados colegas:

Tenemos el gusto de informaros que se ha ampliado el plazo de envío de abstracts para participar en el Segundo Workshop sobre mitigación de emisiones de gases de efecto invernadero provenientes del sector agroforestal que se celebrará en Zaragoza, los próximos 11 y 12 de abril de 2013, en las instalaciones del Campus de Aula Dei, hasta el 18 de enero de 2013. Os recordamos que el envío de abstracts se puede realizar en la siguiente página web http://www.redremedia.org/events/index.php?lang=es.
A su vez, con motivo del Workshop, informaros que se está gestionando una publicación especial en una revista científica de impacto. A este respecto, se informará con mayor detalle más adelante.

Os esperamos en Zaragoza.

El Comité Organizador.

Emisiones de N2O según el proyecto EDGAR

EDGAR son las siglas del Emissions Database for Global Atmospheric Research, un proyecto que cuantifica las emisiones antropogénicas de los diferentes gases de efecto invernadero (GEIs) y algunos contaminantes atmosféricos de los últimos 40 años. Los inventarios están recopilados por distintas secciones como países, actividades y por ámbito geográfico, con una resolución GIS de 0,1º x 0,1º (para más detalles, consultar la metodología). Este proyecto lo llevan a cabo desde la Netherlands Environmental Assessment Agency (PBL), con la financiación de la Comisión Europea. Si no conocéis esta web, os la recomiendo. Se puede encontrar una gran cantidad de información sobre las emisiones de GEIs a nivel mundial que seguro que os será de gran utilidad.

Yo voy a resaltar algunos datos referentes al óxido nitroso (N2O), uno de los principales GEIs de origen biogénico. En suelos agrícolas, este gas se produce fundamentalmente por dos procesos donde los microorganismos juegan un papel fundamental: la nitrificación y la desnitrificación.

Como podemos observar en esta gráfica, la agricultura es la actividad de mayores emisiones de N2O a lo largo de los últimos 40 años, siendo también muy importantes los cambios de uso del suelo y la silvicultura. Esto es debido en gran medida al uso de fertilizantes, tal y como se observa en la siguiente Figura:

Decía que la estimación de emisión de N2O es de aumentar en los próximos años, debido sobre todo a la contribución de determinadas zonas del planeta, tal y como puede verse en este mapa:

Otra versión de estos datos los encontramos en la gráfica de las emisiones por países, que nos confirman donde están las principales “chimeneas” de N2O del planeta, que en un futuro cercano serán las principales economías mundiales…

La reducción de las emisiones de gases de efecto invernadero procedentes de la agricultura: Evitando soluciones triviales a un problema global

El artículo “Reducing greenhouse gas emissions from agriculture: Avoiding trivial solutions to a global problem” escrito por Jeremy R. Franks y Ben Hadingham de la Universidad de Newcastle, resulta muy interesante frente al reto de reducir emisiones en el sector agrario.  Se trata de un análisis sobre los pasos necesarios para disminuir las emisiones generadas por granjas individuales, el sector y el país y los problemas y luego los retos asociados. Define los 3 pasos como:

  • Identificación de las explotaciones agrarias más contaminantes
  • Determinación de las medidas más apropiadas
  • Selección entra las medidas propuestas según su coste-eficacia

Asimismo describe, entre otras, tres dificultades principales para superar si realmente queremos medidas adecuadas. Si no, se encontrará en una situación donde, por lo visto, unas explotaciones están reduciendo sus emisiones, las del sector y las del país pero realmente están  aumentando las emisiones mundiales.

En primer lugar nos cuenta que hay una falta de consenso sobre qué unidades deberíamos utilizar para medir emisiones de GEI y como tal resulta complicado identificar cuáles son las explotaciones más contaminantes.

Segundo, destaca el fenómeno de “Carbon Leakage”. Este término utilizado para explicar la situación en la que un país consigue disminuir sus emisiones gracias a la exportación de productos con pocas emisiones asociadas y la importación de productos con muchas emisiones. Esta fisura legal permite que los países del Anejo 1 del Protocolo de Kyoto consigan  sus objetivos de emisiones. Si fuera a revés, que las emisiones de las importaciones contaran y las de las exportaciones no, el caso del Reino Unido sería muy distinto: las emisiones de GEI serían 19% por encima (en lugar de 3-4% por debajo) del objetivo de Kyoto.

Finalmente, trata sobre la falta de fiabilidad de datos en el coste-eficacia de varias medidas de mitigación. Describe que las curvas de costes de disminución marginal conocidas por sus siglas en inglés, MACCs (Marginal Abatement Cost Curves) excluyen el impacto de las actividades de mitigación sobre la producción y de ahí  las importaciones y exportaciones.  Además observan que no resulta muy útil dar un ranking de medidas por el sector sin tener en cuenta sus interacciones con otros sectores.

El artículo examina unos temas muy interesantes que deberían ser considerados por todos  los grupos de interés antes de formar nuevas políticas de mitigación. Concluyen que será difícil superar pero necesario para evitar soluciones triviales.