Premios RED REMEDIA a la actividad mitigadora del cambio climático en el sector agroforestal

A pesar de contar con pocos días de margen nos gustaría anunciar una sorpresa de última hora. Durante el V workshop RED REMEDIA a celebrarse en IRTA Torre Marimon, Caldes de Montbui (Barcelona), los próximos días 28-29 de Marzo vamos a destacar la labor “mitigadora del cambio climático” en tres ámbitos en relación con la investigación en la reducción de GEI y fomento del secuestro de C en los sectores agrícolas, ganaderos y forestales:

  • Premio a la mejor tesis sobre mitigación (el Doc Miti)
  • Premio a la mejor entrada en el blog (el Blog MITI)
  • Premio al compromiso mitigador (el Big MITI)

original

Premio Doc MITI: Se premiarán a las 2 mejores tesis doctorales desarrolladas en el ámbito de la RED REMEDIA y por soci@s de la RED REMEDIA. La fecha de lectura de la tesis ha de ser a partir del 25 de Marzo de 2015 hasta 1 de Marzo de 2017. Para ello se ha de mandar el resumen de la misma (valdría el formato original) y la información sobre las publicaciones a las que ha dado lugar dicha tesis. La información se ha de mandar antes del 24 de Marzo (2017) a la dirección siguiente:

screenshot-2017-02-16-12-15-30

Se valorará la relación de la temática de la tesis con la RED REMEDIA y el impacto de los trabajos desarrollados en la tesis.

Premio Blog MITI: Se premiarán a los autores de las 3 mejores entradas en el blog escritas desde del 25 de Marzo de 2015 hasta 15 de Febrero del 2017. Para ello se han pre-seleccionado las 8 entradas originales con más visitas:

juan-gallardo-lancho

foto-sobre-mi

 

Premio Big MITI: Por último se premiará al compromiso mitigador fuera de la RED REMEDIA a una persona relevante en el ámbito de la mitigación del cambio climático en el sector agroforestal

La junta de la RED REMEDIA actuará como comité de evaluación. Los premios adelantamos serán modestos  y se entregarán/anunciarán durante la cena del workshop. A pesar de la alfombra roja, excepcionalmente, no se requerirá esmoquin en la misma.

Nos vemos en Caldes de Montbui muy pronto.

Agustin del Prado (coordinador RED REMEDIA)

remedia

 

Convocatoria de la asamblea general de RED REMEDIA y cambios importantes en la RED

Como presidente de la RED REMEDIA me gustaría animar a todos l@s soci@s de la RED REMEDIA a asistir y participar en su próxima asamblea general que va a tener lugar en IRTA Torre Marimon, Caldes de Montbui (Barcelona), el próximo día 29 de Marzo de 2017 a las 12:40, dentro del programa del V workshop de la RED REMEDIA.

junta2017

Me gustaría hacer una especial llamada este año a participar en la reunión debido a la excepcionalidad de la misma. Con la debida reflexión sobre el devenir, el pasado y el futuro de la RED, el presidente le gustaría informar que se va a dar paso a una nueva junta con una renovación total de los cargos, incluído el de presidente, secretario y tesorero.

La principal razón por la cual se ha decidido dar este paso atrás en la RED es precisamente dar la oportunidad de que sabia nueva se incorpore al proyecto de RED REMEDIA. Así, creemos que es la mejor manera para  no sólo tomar un impulso renovado y reforzar la actual hoja de ruta existente de la RED, sino además para poder incorporar nuevos proyectos y  distintas maneras de hacer y entender la RED. En estos 5 años como RED y 4 como asociación se han conseguido numerosos logros que podéis ver resumidos por ejemplo los del 2015 y a lo largo de la trayectoria de entradas en este blog. Hemos organizado 4 talleres (Bilbao-2012, Zaragoza-2013, Valencia-2014, Madrid-2015) y nos encontraremos en dos semanas en Torre Marimon, Caldes de Montbui (Barcelona) para celebrar nuestro 5º workshop-taller.

 

remedia001

Primer workshop en Bilbao organizado por el BC3

DSCN6536c

Segundo Workshop en Zaragoza organizado por CSIC-Aula Dei

Sacamos adelante recientemente un número especial  “Greenhouse Gas Mitigation in the Agricultural Sector in Spain” en la revista Mitigation and Adaptation Strategies for Global Change entre otros logros como RED.

¿Hemos conseguido nuestros objetivos iniciales? Aquí podeis ver el contenido del primer debate que se planteo en la RED REMEDIA en el primer workshop de Bilbao:

Nuestra presentación en sociedad en la Oficina Española de Cambio Climático (OECC) en verano de 2012 (¡qué calor hacía!):

O los contenidos e integrantes de las reflexiones post-workshop Bilbao que hicimos en una reunión a finales de 2012 en CEIGRAM (Madrid):

Dentro de nuestra actividad en la RED también ha habido proyectos fallidos (e.g. proyecto bio) y alguna metedura de pata, generalmente por mi parte (no pongo ejemplos para no dar ventajas al enemigo) fruto seguramente de una mezcla sabiamente dosificada de inexperiencia e impetu mal entendido.

Algo que me gustaría que  se mantuviera como principio inexcusable e innegociable sería  el que la red continuara siendo una red abierta donde quepan todo tipo de sensibilidades , con una decidida apuesta por la transdisciplinariedad como método donde llevar a cabo nuestras complementariedades, rigurosa y crítica en lo científico y ante todo, una RED  donde podamos disfrutar y divertirnos , colaborar y crecer conjuntamente.

Con el fin de ir facilitando la constitución de una posible candidatura a la nueva junta para el día 29 de Marzo en Caldes de Montbui es importante que ya desde ahora las personas potencialmente interesadas en formar parte de la nueva junta puedan visibilizarse para así poder establecer las primeras conversaciones entre la junta saliente y la que viene. En 2 semanas tenemos que tener un nuevo equipo y es importante mover ficha.

weneed

Creo que la participación en esta nueva fase de madurez de la RED REMEDIA es una excelente oportunidad para  que investigador@s en España puedan desarrollar nuevas ideas dentro de un marco sólido como el de REMEDIA, teniendo en cuenta la potencia de algunos de sus proyecto consolidados (e.g. blog, workshops, facebook…) y la existencia de nuevos ilusionantes frentes abiertos de colaboración con tomadores de decisión (e.g. nueva estrategia del INIA, relación con MAPAMA y OECC)  e iniciativas internacionales (e.g. Global Research Alliance, 4 x mil…). Así, animo a que las personas interesadas en formar parte del nuevo”núcleo duro” (incluido un/a nuev@ president@) den un paso al frente mandando su expresión de interés a nuestro email:

screenshot-2017-02-16-12-15-30

En principio, y sin menoscabo de las nuevas ideas de la nueva junta, se toma como premisa que todas aquellas personas en la nueva junta  tendrán un papel claro en las tareas a diseñar en la misma (e.g. página web, social media, grupos de trabajo temáticos, etc…). Los salientes quedamos con el compromiso de estar a la disposición de la nueva junta para ayudarles en todo lo que sea necesario.

Sin más, reciban un cordial saludo del presidente.

Nos vemos pronto en Caldes de Montbui,

Agustin del Prado (Basque Centre For Climate Change)

remediasmall

 

Una mejor distribución espacial de los fertilizantes permitiría reducir la contaminación sin afectar a las cosechas

Un reciente trabajo publicado en la revista Global Biogeochemical Cycles señala cómo una redistribución espacial de los fertilizantes aplicados a cultivos podría reducir sensiblemente la contaminación por nitrógeno sin afectar a las cosechas (Mueller et al. 2017). Este trabajo liderado por Nathaniel Mueller (Harvard University, USA) es el resultado de una colaboración internacional entre varios países en la que también han participado investigadores de la red REMEDIA. El trabajo ha sido resaltado por el Editor de la revista.

La distribución espacial eficiente de nitrógeno (N), u  “optimal allocation” en inglés, tiene como objetivo maximizar la eficiencia de una cantidad definida de N reduciendo las pérdidas al medioambiente (Figura 1). Esta metodología fue desarrollada por Mueller et al. (2014) y aplicada a los principales cereales en base a la base de datos previamente generada a escala global (Mueller et al. 2012) para el año 2000.

Lasslet

Figura 1. La línea azul muestra la “tradeoff frontier” que describe la máxima cosecha alcanzable a un nivel de surplus determinado tras relocalizar eficientemente los fertilizantes. Como se observa el surplus podría ser reducido sensiblemente sin afectar la cosecha o también sin modificarse el surplus, la cosecha podría ser incrementada. Esta figura corresponde a los resultados de 1994-2009. Los resultados de décadas anteriores pueden consultarte en el artículo (Mueller et al. 2017).

En este caso se ha estudiado la evolución de los patrones espaciales de eficiencia de uso del nitrógeno desde 1960 a 2009 a nivel de 12 grandes macro-regiones del mundo y para todos los cultivos agregados. Este estudio ha utilizado los datos obtenidos recientemente por Lassaletta et al. (2016) y publicados en los materiales suplementarios del mismo trabajo (link).

Mueller et al. 2017 concluyen que las mejoras agronómicas han aumentado significativamente la productividad de los cultivos durante las últimas cinco décadas sin embargo la eficiencia espacial en la aplicación de los fertilizantes se ha reducido en paralelo. Una redistribución óptima de los fertilizantes a escala global permitiría una reducción de las emisiones de N de hasta un 41% sin afectar a la producción global.

Los autores reconocen que llevar a cabo esta redistribución a escala global podría ser difícil desde un punto de vista práctico, sin embargo los resultados indican hasta qué punto la agricultura podría ser mucho más sostenible. Esta aproximación es conservadora debido a la resolución de la aproximación y la optimización podría ser mayor abordando la redistribución a escala local. Escalas más locales o regionales pueden ser mucho más adecuadas y además más eficientes para generar alternativas de manejo más fácilmente aplicables. Los mismos autores incluyendo también nuevos investigadores, continúan esta línea de trabajo para la agricultura mediterránea.

Referencias

Lassaletta, L., Billen, G., Garnier, J., Bouwman, L., Velazquez, E., Mueller, N.D., Gerber, J.S., 2016. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environmental Research Letters 11, 095007.

Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A., 2012. Closing yield gaps through nutrient and water management. Nature 490, 254-257.

Mueller, N.D., Lassaletta, L., Runck, B., Billen, G., Garnier, J., Gerber, J.S., 2017. Declining spatial efficiency of global cropland nitrogen allocation. Global Biogeochemical Cycles, 31.

Mueller, N.D., West, P.C., Gerber, J.S., MacDonald, G.K., Polasky, S., Foley, J.A., 2014. A tradeoff frontier for global nitrogen use and cereal production. Environmental Research Letters 9, 054002

Esta entrada ha sido redactada por los autores de Mueller et al 2017

Luis_Lassaletta2

 

 

Siglas, futuro y cambio climático

Si predecir los efectos y la magnitud del cambio climático en el futuro es complicado, predecir cómo nos vamos a comportar en el futuro los seres humanos para mitigarlo o adaptarnos es más bien asunto de bola de cristal. Por eso dentro del marco del IPCC (la comisión internacional de científicos que se dedican a evaluar el estado de la cuestión del conocimiento sobre el cambio climático) se han creado escenarios de futuro de referencia para que sirvan como base para estudiar impactos del cambio climático y su magnitud.  Son los Representative Concentration Pathways y los Shared Socio-economic Pathways, RCP y SSP por sus siglas en inglés.

RCP- el alcance del cambio climático (más información en van Vuuren et al. 2011)

Los RCP representan diferentes escenarios de intromisión de los gases de efecto invernadero (GEI) en el balance del calor que entra y sale en el sistema troposfera-superficie de la Tierra. Este flujo de calor se llama “radiative forcing” y le afectan factores tanto naturales como antropogénicos. Por ejemplo, aumenta si aumentan las concentraciones de gases de efecto invernadero y también cambia según la incidencia de la luz solar en el planeta o por cambios que afectan la energía absorbida por la superficie de la tierra (por cambio de uso del suelo, por ejemplo). Para los escenarios se utilizan los valores de radiative forcing relativos a las condiciones preindustriales (1750), no incluye albedo o polvo y se expresa en Watts por metro cuadrado (W/m2).

¿Por qué se utiliza este concepto y no otro más conocido como la concentración de CO2 para definir los escenarios?: La verdad es que las trayectorias de los escenarios son muy parecidas a las concentraciones atmosféricas de CO2 (Figura 1), porque de todos los factores que aumentan el radiative forcing son los gases de efecto invernadero los que más peso tienen y dentro de ellos, el CO2. Los científicos del IPCC utilizan el concepto de “radiative forcing” porque al incluir todos los factores es más exacto y más útil para aplicarlo en los modelos de convección atmosférica.

En total hay cuatro escenarios RCP y cada uno corresponde al radiative forcing proyectado para final del siglo XXI: 2.6, 4.5, 6 y 8.5 W/m2. El escenario de 2.6 es en el que menos aumenta la temperatura, el de 8.5 el que más. Para más detalles, la NASA ha elaborado unos espectaculares mapas globales de variación de temperatura en base a estos cuatro RCPs.

La gracia de estos escenarios es que no sólo han estado trabajando en ellos expertos en dinámica atmosférica sino de otras muchas disciplinas y han utilizados modelos que integran otras variables además de la atmosférica para definir sus características. No se trataba de hacer una predicción, sino unos escenarios con una lógica interna compartida para poder trabajar como base para hacer simulaciones de magnitudes de impacto, políticas de mitigación etc. Para hacernos una idea el RCP2.6 lo simularon teniendo en cuenta la implementación activa y global de políticas de mitigación, mientras que en el RCP8.5 no hay ni una. Los otros dos escenarios son situaciones intermedias. Población y consumo de energía fósil son otras de las variables de entrada que se tuvieron en cuenta.

El resultado de todo este trabajo es el que se puede ver en la figura 1. Los modelos dan información de los tres principales factores que influyen en el radiative forcing:

  1. Emisiones de gases de efecto invernadero, por ejemplo, la concentración atmosférica de CO2, como en la figura 1.
  2. Contaminación atmosférica (SO2, NOx, etc), que disminuye paralelamente en todos los escenarios, aunque en menor medida en el 8.5.
  3. Usos del suelo, en 2.6 se intensifica y se aumenta la superficie para producir agrocombustibles, mientras que en el 8.5 el aumento de superficie cultivada es proporcional al aumento poblacional. Rompiendo la dinámica que llevaban hasta ahora, en los escenarios intermedios se consideran reducciones del área agrícola y aumento de la superficie forestal.

galan1

Figura 1. Tendencias del radiative forcing (izquierda) según el escenario de RCP. Concentración atmosférica de CO2 (derecha) según el escenario de RCP.  Fuente: adaptado de van Vuuren et al. (2011).

Dentro de la lógica interna de los escenarios la variable que principalmente determina la trayectoria del radiative forcing es el consumo de combustibles fósiles. En la figura 1 se observa cómo el radiative forcing disminuye en algunos de ellos, ¿quiere decir esto que en los escenarios de futuro se contempla reducción del consumo de combustibles fósiles? La respuesta es no, sólo un poco en el escenario RCP2.6. La disminución del radiative forcing (y de la concentración de CO2) en los escenarios 2.6, 4.5 y 6 tiene que ver con que en el diseño de los escenarios se han incluido sistemas de captación y almacén de carbono. Hay mucha controversia con el desarrollo de estos sistemas a gran escala porque compiten con recursos (tierra, agua, capacidad de almacenaje, costes), con la seguridad alimentaria, con la biodiversidad e incluso con otras medidas de mitigación. Además, el éxito de estas medidas es incierto y entraña muchos riesgos (Fuss et al. 2014).

Es importante entender que los escenarios no son predicciones, sino el resultado de resumir las miríadas de escenarios de cambio climático que aparecen en la literatura. Esta es precisamente la función del IPCC, revisar la literatura científica sobre cambio climático, resumirla y publicarla en unos informes que representan el estado de la cuestión científico del momento en que se hizo la revisión. Estas revisiones se hacen cada cinco o seis años. Así que puede ser que con el tiempo (no mucho) el RCP2.6 se vea como muy optimista y el 8.5 como el más probable si todo sigue igual.

SSP- futuros socioeconómicos (más información en O’Neill et al. 2017)

Los desafíos para la implementación de medidas de adaptación y mitigación dependen de las características de la sociedad. ¿Cómo saber qué tipo de sociedad tendrá que enfrentarse a al cambio climático? ¿Qué medidas de adaptación considerará aceptables? ¿Cuántos recursos dedicará a frenar las emisiones? Para reflejar la magnitud del desafío de adaptarse y mitigar el cambio climático según el perfil socioeconómico de la sociedad también se han creado escenarios, los Shared Socio-economic Pathways (SSP). Estos escenarios se refieren únicamente a las características socioeconómicas de la sociedad, las relacionadas con el clima están exentas.  Por ejemplo, no va a adaptarse y mitigar el cambio climático de la misma manera una sociedad igualitaria, cooperativa y con grandes inversiones en fuentes de energía renovables (SSP1) que una sociedad desigual, cerrada y cuya principal fuente de energía sean los combustibles fósiles (SSP3).

Así como los RCPs son de naturaleza cuantitativa, los SSP son cualitativos. Son narrativas de diferentes alternativas de futuro, es decir, una especie de guiones de película que dan la pauta del comportamiento de los factores que dificultan o facilitan la adaptación y la mitigación. Estos factores tienen que ver con el crecimiento económico, la integración regional, la sostenibilidad social (equidad y governanza) y la sostenibilidad ambiental (conciencia ambiental y estilos de vida). La figura 2 representa de manera esquemática los SSPs respecto a la dificultad de la sociedad para adaptarse o mitigar el cambio climático.

galan2

Figura 2. Los cinco SPPs representando las diferentes combinaciones de desafíos para adaptarse o mitigar el cambio climático. Fuente: adaptado y traducido de O’Neill et al. (2017).

El argumento de cada escenario es el siguiente:

SSP1. Tecnologías respetuosas con el medio ambiente, energías renovables, instituciones que facilitan la cooperación internacional, baja demanda energética. Mejora del bienestar humano, flexibilidad institucional a todos los niveles.

SSP2. Desarrollo moderado como tendencia global aunque muy desigual entre e inter países.

SSP3. Desarrollo y conciencia ambiental limitados. El crecimiento de la población se estanca en países desarrollados. Dependencia de combustibles fósiles, lento cambio técnico y dificultad para conseguir cooperación internacional. Desarrollo humano limitado, bajo crecimiento de rentas, falta de instituciones efectivas (sobre todo para actuar entre regiones).

 SSP4. Desarrollo de  tecnologías low-carbon y una sociedad internacional bien integrada que permite su generalización. Políticas ambientales centradas en problemáticas locales en las áreas de nivel de renta medio-alto y grandes proporciones de población con niveles bajos de desarrollo y con difícil acceso a instituciones que lidien con estrés ambiental o económico.

SSP5. Fuerte dependencia de combustibles fósiles y falta de conciencia ambiental global. Desarrollo humano alto, crecimiento económico e infraestructuras potentes.

El objetivo de estos SSPs no es la comunicación entre científicos y políticos, sino que en combinación con los RCPs, sirvan como una herramienta para la comunidad científica, algo así como un marco común de referencia que puede ser actualizado, para poder llevar a cabo análisis integrados que sean de utilidad para el desarrollo de políticas climáticas. Por ejemplo, si quisiéramos hacer escenarios de medidas de adaptación de subida del nivel del mar, en el SPP1 contemplaríamos la opción de recuperar los ecosistemas de marismas, mientras que en el SPP3 como mucho contemplaríamos un muro en la costa y que las rentas más altas se irían a vivir a las cimas de las montañas y tocarían madera…

Además de los RCPs y los SSPs, se están desarrollando los representative agricultural pathways (RAPs), que están centrados en los impactos del cambio climático en la agricultura. Así que es posible que dentro de poco me vea escribiendo un post parecido a este…

Para acabar, estos escenarios están hechos por y para ser usados por modelizadores. Un modelizador es un investigador que hace experimentos sin un laboratorio. Tiene un mundo artificial (un modelo) lleno de efectos (ecuaciones) que interaccionan entre sí. Para hacer funcionar los modelos y experimentar con ellos hace falta tomar muchas decisiones, así que trabajos como el diseño de estos escenarios, aunque no son perfectos, son un paso para la transparencia del proceso.

Que tantos científicos hayan conseguido ponerse de acuerdo en un marco de análisis no es nada corriente y seguro que el esfuerzo ha sido enorme. Este es el pensamiento esperanzador que contrasta con la inquietud de observar los escenarios de las figuras 1 y 2 porque, aunque no sean para predecir el futuro, no puedo evitar preguntarme ¿cuál será el más probable?

Fuss, Sabine, Josep G. Canadell, Glen P. Peters, Massimo Tavoni, Robbie M. Andrew, Philippe Ciais, Robert B. Jackson, et al. 2014. «Betting on negative emissions». Nature Climate Change 4 (10): 850-53. doi:10.1038/nclimate2392.

O’Neill, Brian C., Elmar Kriegler, Kristie L. Ebi, Eric Kemp-Benedict, Keywan Riahi, Dale S. Rothman, Bas J. van Ruijven, et al. 2017. «The Roads Ahead: Narratives for Shared Socioeconomic Pathways Describing World Futures in the 21st Century». Global Environmental Change 42 (enero): 169-80. doi:10.1016/j.gloenvcha.2015.01.004.

Vuuren, Detlef P. van, Jae Edmonds, Mikiko Kainuma, Keywan Riahi, Allison Thomson, Kathy Hibbard, George C. Hurtt, et al. 2011. «The Representative Concentration Pathways: An Overview». Climatic Change 109 (1-2): 5-31. doi:10.1007/s10584-011-0148-z.

Dónde encontrar la base de datos de RCPs http://www.iiasa.ac.at/web-apps/tnt/RcpDb/

Dónde encontrar la base de datos de SPPs https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about

Elena Galán del Castillo (Basque Centre For Climate Change, BC3)

elena_galan

logo_bc3

 

 

INVENTARIOS GEI EN REMEDIA V

Nuevos alicientes para no perderse la cita ineludible del año en relación a la agricultura, ganadería y sector forestal en el contexto de Cambio Climático. Desde la RED REMEDIA os informamos que tenemos una incorporación de última hora para el workshop REMEDIA V. Martín Fernandez Diez-Picazo  de la Unidad de Inventarios de MAPAMA nos hablará sobre la estructura de inventarios GEI en España  y las necesidades de investigación por parte del Inventario.

Aprovechando dicha charla en el marco del workshop nos gustaría reactivar el grupo REMEDIA-inventarios con una pequeña reunión de la misma. Así, convocamos a tod@s los soci@s interesados en la actividad de este grupo a una reunión que tendrá lugar en el trascurso del workshop (hora aún por determinar aunque probablemente sea justo después de la primera jornada).

img_2893

Así, si estás interesad@ en formar parte de este subgrupo REMEDIA inventarios y participar en esta reunión por favor mándanos antes del 10 de Marzo tus coordenadas (indicando nombre-apellidos, centro e interés/posible aportación en participar en este grupo) a la cuenta de correo:

screenshot-2017-02-16-12-15-30

Recordamos que es imprescindible ser soci@ para participar de este grupo (¡por si no teníais suficientes alicientes ya!)

El grupo de inventarios-REMEDIA tiene dos objetivos principales:

  1. ¿cómo puede contribuir la RED REMEDIA a mejorar los inventarios GEI en España?
  2. ¿Cómo puede contribuir la RED REMEDIA a los nuevos documentos guías (o bases de datos) del IPCC sobre estimaciones de emisiones y sumideros?

Es precisamente en este segundo punto, donde hemos preparado con la ayuda de Maria Jose Sanz  miembro del IPCC del grupo “Task Force on NAtional GHG inventories”  un adelanto de algunos puntos posibles donde la RED REMEDIA podría contribuir (en inglés).

remedia

logoremediaworkshop_v-02

 

 

Cultivos cubierta: una estrategia de mitigación y adaptación frente al cambio climático

Los cultivos cubierta o intercalares son aquellos que se introducen en las rotaciones con el principal objetivo de mejorar la sostenibilidad ambiental del sistema y no tanto para aumentar el beneficio económico. Sin embargo, debido a las innumerables ventajas que pueden ofrecer al agricultor como fuente de nutrientes, aporte de materia orgánica, mejoradores de la estructura del suelo o control de malas hierbas pueden suponer un beneficio económico a medio plazo.

Los usos más conocidos de los cultivos cubierta son protegiendo el suelo en las calles de cultivos leñosos y remplazando a los barbechos tradicionales en rotaciones de cultivo en las que el suelo queda desnudo durante un período largo de tiempo. Cuando pensamos en los beneficios ambientales asociados a los cultivos cubierta, nos viene a la cabeza su papel para controlar la erosión, fijar nitrógeno atmosférico, controlar la lixiviación de nitratos o mejorar la calidad del suelo; sin embargo, hay escasa información de su capacidad como estrategia para la mitigación y adaptación al cambio climático a pesar de que existe un común acuerdo en que mejoran la resistencia de los sistemas de cultivo ante situaciones adversas.

En el artículo recientemente publicado por Kaye y Quemada (2017) se parte de la comparación entre dos ensayos ampliamente estudiados de dos zonas climáticas my diferentes, una templada en Pensilvania (EEUU) y otra mediterránea-continental en Aranjuez (España), para evaluar el efecto de reemplazar los barbechos tradicionales por cultivos cubierta en el potencial de calentamiento global de los sistemas de cultivo y revisar su papel como estrategia de adaptación ante cambios futuros de temperatura o precipitación.

fig1

Figura 1. Dos ensayos de cultivos cubierta en Aranjuez (Madrid) en primavera. El más cercano muestra parcelas de mezclas de veza/cebada vivas (verdes) ya matadas (amarillas) y suelo desnudo. El más lejano es un ensayo que ha comparado durante más de 10 años diferentes especies de cultivos cubierta frente al barbecho invernal en rotaciones basadas en cultivos de verano de regadío.

El potencial de calentamiento global es una medida de la capacidad que tiene un sistema para contribuir al cambio climático y se expresa en equivalentes de CO2 producidos por hectárea y año. Se trata de un balance en el que hay medidas como el secuestro de carbono o el ahorro de fertilizante nitrogenado que disminuyen esa capacidad, mientras que otras como la emisión de gases de efecto invernadero o consumo de combustibles por la maquinaria agrícola que la aumenta. En este caso se cuantificó que la utilización de cultivos cubierta disminuye el potencial de calentamiento global con respecto al barbecho  en 141 kg de CO2 equivalente por hectárea cuando se emplean gramíneas como cultivos cubierta y en 160 si se emplean leguminosas o mezcla gramíneas/leguminosas. Así el empleo de cultivos cubierta podría ser una medida de mitigación muy eficiente frente al cambio climático, equivalente o superior a la transformación de sistemas de laboreo intensivo a no-laboreo, siendo los dos términos más importantes en la reducción el secuestro de C y la reducción de fertilizantes nitrogenados en el caso de leguminosas. Una novedad mostrada en este artículo es que el cambio producido en el albedo, es decir la reflexión de la radiación incidente, de la superficie del terreno debe ser considerado al evaluar la capacidad de mitigación de las estrategias de cultivo. En el caso de los cultivos cubierta su peso fue incluso superior al ahorro de fertilizantes nitrogenados de las leguminosas, aunque varía mucho en función del tipo de superficie cubierta (suelo oscuro, claro, cubierto de nieve). Incluso los residuos de los cultivos cubierta una vez muertos reflejan gran cantidad de radiación, contribuyendo a disminuir la temperatura del suelo y la capacidad de calentamiento, lo que sería interesante evaluar también en los sistemas de laboreo que producen un acolchado de residuos sobre el suelo.

fig2

Figura 2. Ensayo de cultivo cubierta en Pensilvania (EE.UU.) en una rotación de maíz/soja/trigo al final de verano. En el centro se ven los refugios para evitar la entrada de lluvia y estudiar la sequía. A la izquierda, distintas especies de cultivos cubierta que se sembraron después del trigo en agosto.

El manejo de las cultivos cubierta puede hacer que se constituyan también en una importante herramienta de adaptación frente al cambio climático. Especialmente a través de la reducción de la vulnerabilidad de los sistemas de cultivo frente a la erosión de los eventos de lluvia extremos y mediante el aumento de las opciones de manejo del agua durante períodos de sequía o saturación, ya que su terminación o permanencia nos permite controlar el agua almacenada en el suelo. El aumento de temperatura y de los eventos de lluvia intensos ha llevado a predecir una mineralización más rápida o ‘a pulsos’ y acumulación de nitrógeno en el suelo susceptible de perderse por lixiviación o emisiones gaseosas; en este caso, los cultivos cubierta podrían tener un importante papel reteniendo el N acumulado en forma vegetal y liberándolo lentamente, disminuyendo su pérdida y contribuyendo a un reciclaje dentro del sistema de cultivo. En conjunto, se encontraron pocos inconvenientes ligados a la introducción de cultivos cubierta como estrategias de adaptación y mitigación al cambio climático, de forma que sería esperable que muchos de los servicios ecosistémicos proporcionados por lo cultivos cubierta en condiciones actuales se verían reforzados en escenarios futuros.

Kaye J y Quemada M. 2017. Using cover crops to mitigate and adapt to climate change: a review. 2017. Agronomy for Sustainable Agriculture, 37:4. DOI 10.1007/s13593-016-0410-x.

Autor de la entrada: Miguel Quemada Sáenz-Badillos

miguelq

ceigram

Curso Internacional Ecología del Paisaje “Landscape modelling”

Los días 24-28 de Abril de 2017 tendrá lugar en el IRTA (centro de Sant Carles de la Ràpita)

el curso sobre Internacional Ecología del Paisaje.

Sobre el instructor del curso:

El Dr. Enrique Reyes, Profesor de la East Carolina University en Carolina del Norte, EUA, cuenta con una importante trayectoria académica, tanto en su actividad como docente como investigadora. Ha organizado numerosos cursos de grado y posgrado en universidades de Estados Unidos, México y España, en temas relacionados con ecología del paisaje, ecología de ecosistemas, cambio climático y modelos ecológicos. Se desempeña además como Investigador Principal en proyectos financiados por la Environmental Protection Agency y la Fundación Nacional de Ciencia (NSF en los EUA) y dirige o forma parte del comité asesor de un número importante de tesis de doctorado y máster.

enrique-reyes1

 Descripción del curso:

La ecología del paisaje estudia las interacciones explícitas entre los patrones espaciales y los procesos ecológicos, incluyendo la influencia de las actividades humanas. El temario que se propone cubre conceptos básicos, teóricos y metodológicos propios de esta disciplina, así como ejemplos de aplicaciones concretas en conservación, manejo de recursos y gestión territorial.

El curso tendrá una duración total de 30 horas y está destinado principalmente a alumnos de Licenciatura en Biología y posgrado en ciencias agropecuarias y ciencias biológicas y de la salud.

Objetivos:

Para aprobar el curso, los alumnos deben demostrar la comprensión de los conceptos básicos de la disciplina, conocer las herramientas metodológicas para caracterizar patrones de paisaje/regionales y ser capaces de relacionar los patrones espaciales con procesos ecológicos.

Organización del curso:

El curso constará de una parte teórica y de una parte práctica. En las clases teóricas se expondrán los conceptos básicos especificados en el programa que se adjunta. Se proponen sesiones de discusión en temas de particular relevancia, en las cuales los alumnos analizarán una serie de artículos científicos de publicación reciente y gran relevancia (ver “Bibliografía adicional considerada en el curso”). Las sesiones de discusión implicarán una participación activa por parte de los alumnos, tanto en la exposición de los trabajos analizados como en la elaboración de una síntesis de los conceptos teóricos cubiertos en cada sesión. En las clases prácticas se aplicarán algunos métodos computacionales para el análisis de patrones regionales y se darán nociones en el uso de sistemas de información geográfica y procesamiento digital de imágenes. El examen final tendrá modalidad escrita e incluirá preguntas sobre los conceptos cubiertos en las clases teóricas, las sesiones de discusión y los trabajos prácticos.

Más detalles del curso:

 

 

Vacantes de trabajo en CIMMYT

El centro internacional de la mejora del maíz y el trigo (CIMMYT) es una organización sin animo de lucro dedicada a la investigación y la formación con mas de 100 centros colaboradores distribuidos por todo el mundo.

screenshot-2017-02-16-15-35-12

En la actualidad hay varios puestos vacantes.

Crop Modeler/Physiologist. CIMMYT esta buscando profesionales experimentados con conocimientos técnicos y capacidad de liderazgo para dirigir un grupo de investigación enfocado a modelización de cultivos, con especial énfasis en maíz y trigo. El/La candidato/a  liderará un grupo de científicos jóvenes y estudiantes de la Henan Agricultural University en China con el fin de desarrollar y utilizar modelos de cultivo y herramientas geo-espaciales para comprender y predecir pérdidas de rendimiento. Se requiere un mínimo de seis años de experiencia.

Geospatial Analyst/Specialist. CIMMYT esta buscando profesionales con experiencia en análisis espacial aplicado para liderar un grupo de jóvenes investigadores y estudiantes de la Henan Agricultural University en China. El/La candidato/a debe tener una formación sólida en utilización de datos geoespaciales para el seguimiento de los cultivos y el desarrollo de agricultura de precisión con el fin de mejorar  la eficiencia en el uso del agua y los nutrientes. Debe contar con experiencia en la obtención de datos, incluyendo “crowd sourcing” y  técnicas analíticas y de modelización novedosas para integrar datos procedentes de distintos niveles y fuentes en sistemas para el apoyo de toma de decisión. Se requiere un mínimo de 10 años de experiencia.

Para mas información www.cimmyt.org

Información subida por ML Cayuela (CEBAS-CSIC)

 

MODELIZACIÓN DEL SECUESTRO DE CARBONO EN MONTE BAJO DE CASTAÑO: EFECTO DE LA GESTIÓN FORESTAL

Las masas forestales juegan un papel importante en la fijación y almacenamiento de carbono, por lo que el desarrollo de modelos predictivos que permitan conocer la evolución de su almacenamiento bajo diferentes escenarios selvícolas supone una herramienta esencial para evaluar sus efectos de mitigación frente al cambio climático. Si bien la principal técnica de manejo forestal para almacenar carbono y mitigar el CO2 atmosférico involucra la reforestación, también es importante tener en cuenta el manejo de los bosques existentes.

Es esencial evaluar el efecto de cada alternativa selvícola, para así lograr una evaluación práctica y realista del papel (potencial) de los bosques en la mitigación del cambio climático. Sin embargo, no sólo es importante evaluar el almacenamiento de carbono en la biomasa y el suelo. Los productos maderables juegan un papel significativo en el almacenamiento de carbono del sistema por lo que su evaluación y cuantificación en términos de carbono es fundamental. En este sentido, este trabajo ofrece un enfoque innovador para evaluar el secuestro de carbono en monte bajo de castaño considerando la importancia de los flujos de carbono en toda la cadena de valor monte-industria.

En este trabajo publicado en la revista Journal of Cleaner Production por el CETEMAS en colaboración con el Instituto de Gestión Forestal Sostenible de la Universidad de ValladolidINIA se plantearon los siguientes objetivos:

1) Determinar la línea base de almacenamiento de carbono en monte bajo de castaño (Castanea sativa Mill.) en el norte de España (Asturias);

2) Evaluar el efecto de la gestión forestal (claras y turnos de corta) en el almacenamiento de carbono;

3) Evaluar el efecto de sustitución de los productos maderables de castaño como alternativa a otros materiales de mayor consumo energético.

celia1

Marco metodológico del estudio: para evaluar el contenido de carbono de la biomasa aérea y subterránea, suelo y productos maderables bajo diferentes escenarios selvícolas se utilizó el modelo CO2FIX v 3.1. (http://www.efi.fi/projects/casfor/). Este modelo cuantifica de forma simplificada el almacenamiento de carbono de una masa forestal proporcionando información sobre el flujo y balance de carbono en el tiempo, permitiendo realizar simulaciones para múltiples rotaciones. La parametrización del  modelo en función de la edad de la parcela se llevó a cabo utilizando datos de crecimiento de las masas, datos climáticos, “turn-over” del desfronde, datos de procesamiento de los productos maderables en el aserradero y datos de su vida útil y fin de vida.

Se evaluaron cinco alternativas selvícolas: línea base (escenario 1), donde se evaluó el sistema actual de aprovechamiento que se realiza en la zona para la especie: corta final a la edad de turno (40 años) sin intervenciones selvícolas previas. Escenarios A donde se planteó una selección de brotes a los 10 años, una clara a los 15 años, y corta final a dos edades diferentes, a los 40 años (A-Th1R40) y a los 60 años (A-Th1R60). Y escenarios B donde se plantearon las mismas intervenciones selvícolas que en el escenario A, pero añadiendo una clara a la edad de 26 años y también a dos edades de corta final, 40 años (B-Th1R60) y 60 años (B-Th2R60).

Los resultados sugieren que la aplicación de claras en el manejo del castaño alteró el carbono total del sistema. Cuando el manejo forestal fue intenso (más de una clara), se observó una pérdida de carbono con respecto a la línea base. Sin embargo, en los escenarios donde sólo se consideró una clara, se observó un pequeño aumento en el carbono total comparado con la línea base, principalmente en términos del carbono almacenado en los productos maderables. Además, extender la rotación de 40 a 60 años bajo este régimen silvícola proporcionaría un aumento del 9,14% en el carbono total al permitir un mayor crecimiento de la biomasa y en consecuencia un aumento del almacenamiento de carbono (Tabla 1).

Tabla 1. Evolución del contenido de carbono en cada escenario por rotaciones y componentes

tabla1

Por otra parte, se observó un efecto positivo en el almacenamiento de carbono total cuando se dispone de más madera para la fabricación de productos de vida larga (ej. vigas). El efecto positivo en disminución de las emisiones de gases efecto invernadero mediante la sustitución de materiales como el cemento o combustibles fósiles supuso una adición más en términos de los efectos de mitigación de esta especie (Figura 1).  En su conjunto, la información obtenida en este trabajo ayudará a los gestores forestales en su planificación y toma de decisiones, teniendo en cuenta la importante opción de mitigación de la especie.

fig1

Figura 1. Efecto de sustitución en las emisiones de GEI al reemplazar los materiales tradicionales (hormigón para la construcción y combustibles fósiles para calefacción) por los productos de madera de castaño.

Este trabajo se encuentra dentro de la línea de investigación que lleva a cabo nuestro grupo del CETEMAS sobre el “Efecto de la gestión selvícola de las masas forestales del norte de España en la mitigación del cambio climático”.

Referencia del artículo:

Prada M, Bravo F, Berdasco L, Canga E, Martínez-Alonso C. 2016. Carbon sequestration for different management alternatives in sweet chestnut coppice in northern Spain. Journal of Cleaner Production 135 (1): 1161-1169 http://dx.doi.org/10.1016/j.jclepro.2016.07.041

Contacto:

Celia Martínez-Alonso, investigadora de Centro Tecnológico Forestal y de la Madera (CETEMAS) de Asturias.

cmartinez@cetemas.es

cetemas

 

 

 

 

 

 

 

 

 

 

 

Figura 1. Efecto de sustitución en las emisiones de GEI al reemplazar los materiales tradicionales (hormigón para la construcción y combustibles fósiles para calefacción) por los productos de madera de castaño.

Recordatorio-V Workshop de RED REMEDIA

Apreciados colegas, los plazos se van acabando y tenemos unos recordatorios que haceros

ABSTRACTS:

El próximo 15 de febrero finaliza el plazo de envío de abstracts para el V Workshop REMEDIA. No habrá ninguna ampliación de plazo ya que tenemos pocos días para revisarlos y establecer el programa definitivo.

INSCRIPCIONES:

Recordaros a todos los que aún no os habéis inscrito, que lo hagáis a la máxima brevedad, para poder contrastar que todas las comunicaciones se asocian a una inscripción. Hay que efectuar el pago para que las inscripciones sean válidas y podamos organizar bien vuestra acogida.

Si os inscribís como socios, deberéis estar al corriente del pago de la Cuota anual de REMEDIA (datos bancarios). Si no estáis seguros de estar al corriente, podéis contactar con Jorge Alvaro (jorgeaf@eead.csic.es), tesorero de la RED.

ALOJAMIENTO:

En los hoteles de Caldes de Montbui nos siguen manteniendo las tarifas, pero no pueden mantener las habitaciones bloqueadas por más tiempo. OS rogamos que si queréis alojaros en Caldes, donde celebraremos el Workshop y la cena social del día 29, hagáis las reservas cuanto antes, tal y como indicamos en la web.

Para cualquier cosa no dudéis en contactar con nosotros

El comité organizador

29-30 de marzo de 2017

IRTA Torre Marimon

Caldes de Montbui

Teléfono: +34 93 467 40 40
e-mail:
jornada.hortamb@irta.cat

untitled